1.4 Chemical Equilibrium

- Some reactions go to completion
 - Reactants form products
 - No reactants left (unless in excess)

$$\circ e.g. \operatorname{Na}_2CO_3(aq) + 2HCI(aq) \longrightarrow 2\operatorname{Na}CI(aq) + H_2O(l) + CO_2(g)$$

- Some reactions never reach completion
 - At equilibrium reactant and product concentration remains constant indefinitely
 - Must be a closed system where reactants and products cannot escape but energy can be transferred to and from the system.
 e.g. CH₃COOH(aq) ← CH₃COO⁻(aq) + H⁺(aq)
 - Rate of forward reaction is equal to the rate of the reverse reaction

Equilibrium Constant

- Every equilibrium can be described by an equilibrium constant (K)
- Equilibrium constant (K) characterises the equilibrium composition of the reaction mixture
 - High K (above 1) higher % of products in equilibrium mixture
 - Low K (below 1) lower % of products in equilibrium mixture
- K is measured in terms of the concentration of species at equilibrium (or in terms of partial pressures in gas equilibrium)

For the reaction $aA + bB \implies cC + dD$

$$\mathsf{K} = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

A, B, C & D are chemical formulae

gas escapes

a, b, c & d are stoichiometric coefficients (numbers in equation)

- Homogeneous equilibrium is when all species are in the same state
- Heterogeneous equilibrium have species are in more than one state
- Equilibrium constant K has no units
- Equilibrium constant K is independent of the particular concentrations or pressures of species in a given reaction
- When a pure solid is present in an equation or a liquid is present as a solvent, its concentration, at a given temperature, doesn't vary to a measurable extent.
 - It is given the value of 1 in equilibrium equations (due to activity)

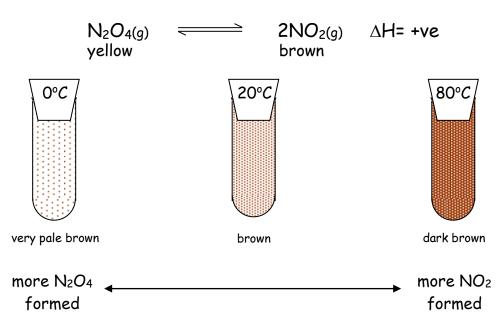
Effect of Changing Concentration

For example:

Dilute ethanoic acid has a pH=3.0 but adding a spatula of sodium ethanoate raises pH to 3.5

 $CH_3COOH(aq) \longrightarrow CH_3COO^{-}(aq) + H^{+}(aq)$

 $CH_3COONa(s) \longrightarrow CH_3COO^{-}(aq) + Na^{+}(aq)$


- CH₃COO⁻Na⁺ fully ionises on solution
- pH rises as [H⁺] falls
 - $\circ~$ H^+ ions react with the increased concentration of CH_3COO^- ions to form molecules of CH_3COOH
 - Position of equilibrium shifts to LEFT but value of K remains constant

CH₃COOH(aq)
$$\longrightarrow$$
 CH₃COO⁻(aq) + H⁺(aq)

$$K = \frac{[CH_3COO^{-}] \times [H^{+}]}{[CH_3COOH]}$$

- \circ increase in [CH₃COO⁻] is balanced by decrease in [H⁺] increase in [CH₃COOH]
- $\circ~$ Value of K remains constant by a combination of these changes
- The value of K remains constant (at the same temperature) as the equilibrium position shifts which results in changes in the concentrations of the species in the reaction
- Le Chatelier's Principle: "When a reaction at equilibrium is subjected to change, the composition alters in such a way as to minimise the effects of the change."

The Effects of Changing Temperature

- From colour changes, relative concentrations of N_2O_4 and NO_2 have changed with temperature changes
- Value of K has changed
- Value of K is dependant on temperature
- Values of K constants are quoted at particular temperatures

 $N_2O_4(g) \xrightarrow{endothermic} 2NO_2(g) \quad \Delta H= +ve$ $K = \frac{[NO_2]^2}{[N_2O_4]}$

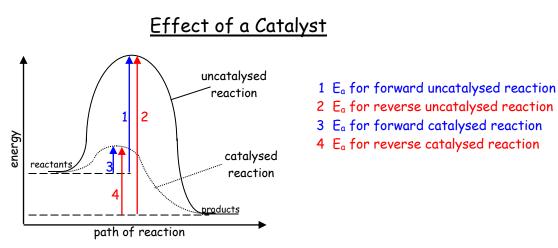
- When temperature 20°C is lowered to 0°C
 - \circ More N₂O₄ is formed (as exothermic reaction is favoured)
 - Brown colour (from NO2) fades

K =
$$\frac{\left| [NO_2]^2}{\left| [N_2O_4] \right|}$$
 = decrease in value of K

- When temperature 20°C is raised to 80°C
 - \circ More NO₂ is formed (as endothermic reaction is favoured)
 - Brown colour darkens (from more NO₂ produced)

$$K = \frac{\int [NO_2]^2}{\int [N_2O_4]} = increase \text{ in value of } K$$

For endothermic reactions


Increase in temperature

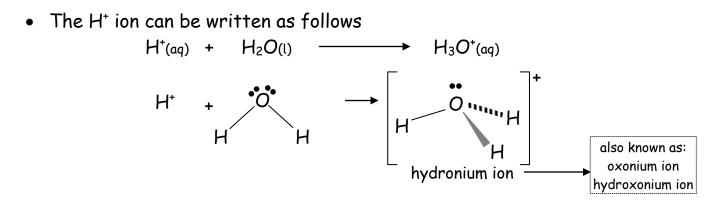
For exothermic reactions

Increase in temperature

increase in equilibrium constant K *increase* in product yield

decrease in equilibrium constant K decrease in product yield

- Catalysts lower activation energy E_a for both forward and reverse reactions by the same amount
- No change in the equilibrium concentration so position of equilibrium unchanged
- Equilibrium constant K is unaltered (at the same temperature)
- Catalysts speed up rate at which equilibrium is established


Equilibrium Constant K and Position of Equilibrium

- Value of K gives indication of how far equilibrium lies to the left or the right of a chemical reaction
 - High K means more products in the equilibrium mixture
 - Low K means more reactants in the equilibrium mixture
- K gives no indication about the rate at which dynamic equilibrium is established
- Catalysts do not increase percentage conversion of reactants to products
 - Catalysts only affect the speed at which equilibrium is attained
- For example

System	Value of K	Position of Equilibrium
$Ag^+ + 2NH_3 \Longrightarrow [Ag(NH_3)_2]$	1.7 × 10 ⁷ at 25°C	K >> 1 Equilibrium lies to right (more products at equilibrium)
$CH_3COOH \Longrightarrow CH_3COO^- + H^+$	1.8 × 10 ⁻⁵ at 25°C	K << 1 Equilibrium lies to left (more reactants at equilibrium)
N ₂ O ₄ = 2NO ₂	0.87 at 55°C	K ~ 1 Equilibrium lies neither to left or right (similar amounts of reactants and products at equilibrium)

Acid/Base Equilibria

- Acids produce H⁺ ions in solutions and bases produce OH⁻ ions in solution
- Neutralisation: $H^{+}(aq) + OH^{-}(aq) \longrightarrow H_2O(l)$
- however
 - HCl gas has no H⁺ ions but can neutralise alkalis
 - $\circ~$ NH_3 gas can neutralise acid but contains no OH^- ions

 H⁺(aq) is the shorthand form and is often used in stoichiometric and equilibrium equations, despite being an inaccurate representation of the chemical.

- An acid is any substance capable of donating a proton (H^{+})
- A base is any substance capable of accepting a proton (H⁺)
- For every acid, there is a conjugate base formed by the loss of a proton (H⁺)
- For every base, there is a conjugate acid formed by the gaining of a proton $(\mathsf{H}^{\scriptscriptstyle +})$

	Acid		Base		Conjugate Base		Conjugate Acid
1.	<u>HCI</u>	+	H₂O	<u> </u>	Cl⁻	+	H₃O⁺
2.	СН₃СООН	+	H₂O	<u> </u>	CH₃COO ⁻	+	H₃O⁺
3.	H ₂ O	+	NH₃	<u> </u>	OH⁻	+	NH₄⁺
4.	H₂O	+	CH₃COO⁻	<u> </u>	OH⁻	+	СН₃СООН

- Water can be described as amphoteric since it acts as
 - Proton acceptor (examples 1 & 2)
 - Proton donor (examples 3 & 4)

Dissociation of Water

• Water can dissociate as the following equation shows:

H ₂ O(l) +	H ₂ O(l)	$=$ $H_3O^+(aq)$	+ OH ⁻ (aq)
acid	base	conjugate acid	conjugate base
		(accepts proton)	(donated proton)

• The equilibrium constant K for the dissociation of water is:

$$K = \frac{[H_3O^+] \times [OH^-]}{[H_2O]^2}$$

But $[H_2O] = 1$ as water is the solvent in the equation

Ionic Product $K_w = [H_3O^+] \times [OH^-] = 1 \times 10^{-14} \text{ mol}^2 l^{-2} \text{ at } 25^\circ C$

• In pure water

 $H^{+}(aq) + OH^{-}(aq) = H_2O(l) \qquad K_w = [H^{+}][OH^{-}] = 1 \times 10^{-14}$

- For every H⁺ ion produced, there is an equal number of OH⁻ ions produced
- $[H^+] = [OH^-] = 10^{-7} \text{ mol } l^{-1} \text{ in pure water at } 25^{\circ}C$
- The Ionic Product K_w varies with temperature
 - $\circ H_2O(l) \iff H^+(aq) + OH^-(aq) \qquad \Delta H = +ve$
 - forward reaction is endothermic (bond breaking)
 - o increase in temperature favours the endothermic reaction
 - \circ equilibrium moves to RHS more dissociation i.e. $f[H^+]$ and $f[OH^-]$
- K_w is temperature dependent

Temperature (°C)	Ionic Product Kw
18	0.6 x 10 ⁻¹⁴
25	1×10^{-14}
40	2.9 x 10 ⁻¹⁴
75	16.9 × 10 ⁻¹⁴

• Increase in Temperature increases the $K_{\rm w}$ and increases the dissociation.

<u>The pH Scale</u>

• $pH = -log_{10} [H^+]$ (or $pH = -log_{10} [H_3O^+]$)

e.g. pure water
$$[H^+] = 10^{-7} \text{ mol } l^{-1}$$
 pH = 7

1M HCl $[H^+] = 1 \mod l^{-1} = 10^0$ pH = 0

0.2M HCl
$$[H^+] = 2 \times 10^{-1} \text{ mol } l^{-1}$$

log₁₀ $[H^+] = -0.7$
-log₁₀ $[H^+] = 0.7$ pH = 0.7

For calculations involving strong acids and strong alkalis, it is assumed that they are 100% dissociated and the number of H⁺ ions in the water can be ignored.

Questions

- 1. Calculate the pH of the following solutions
 - a) 0.35 mol l⁻¹ HNO₃
 - b) 0.14 mol $l^{-1} H_2 SO_4$
 - c) 0.78 mol l⁻¹ NaOH

Strong & Weak Acids

a) <u>Strong Acids</u>

Strong acids are acids which fully ionise to release $\mathsf{H}^{\scriptscriptstyle \mathsf{t}}$ ions

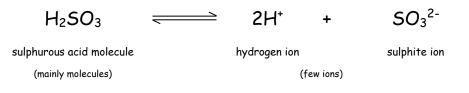
	HCl(g) —	(aq)	H⁺(aq) + Cl⁻((aq)
Strong Acid	hydrochloric acid	sulphuric acid	nitric acid	
Formula	HCI	H₂SO₄	HNO3	


• Strong acids fully dissociate into ions

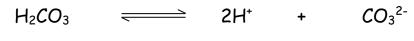
e.g.

b) <u>Weak Acids</u>

Weak acids do not fully dissociate in water


- Only partial dissociation of H⁺ ions from parent molecule
- i) Ethanoic Acid (and other alkanoic acids)

ii) <u>Sulphur Dioxide Solution</u>


Sulphur Dioxide dissolves in water to form the weak acid sulphurous acid

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

iii) Carbon Dioxide Solution

Carbon Dioxide dissolves in water to form the weak acid carbonic acid $CO_2 + H_2O \longrightarrow H_2CO_3$

carbonic acid molecule (mainly molecules) hydrogen ion

(few ions)

carbonate ion

- iv) Other Weak Acids
- Phosphoric acid (H₃PO₄)
- Citric acid found in citrus fruits

Strong & Weak Alkalis

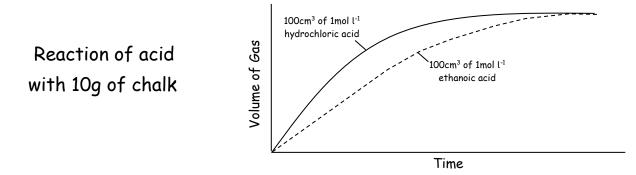
a) <u>Strong Alkalis</u>

Strong alkalis are alkalis which fully ionise to release OH⁻ ions

e.g.		NaOH(s) —	(aq) >	Na ⁺ (aq) + Of	- ⁻(aq)
	Strong Alkali sodium hydrox		potassium hydroxide	lithium hydroxide	
	Formula	NaOH	кон	LiOH	
• 5	trong alkalis	fully dissociate	into ions		
	-				
		b) <u>We</u>	<u>ak Alkalis</u>		
Weak a	lkalis partial	ly dissociate to i	release a few Ol	H ⁻ ions	
e.g. am	nonia solutio	n (ammonium hyd	droxide)		
-	NH3(ag) +	$H_2O(l) =$	NH4⁺(ag) + OH ⁻ (aq)	
	1 1 1 3 (uq)		1 11 14 (44		
am	monia molecule	water molecule	ammonium io	on hydroxide ior	ı
	(mainly mole	cules)		(few ions)	

• Ammonia is slightly soluble in water

Comparing Strong and Weak Acids/Alkalis


a) Comparing Hydrochloric Acid and Ethanoic Acid

- Strong acids have 100% of the H⁺ ions available to react at all times
- Weak acids have only a small proportion of the $\mathsf{H}^{\scriptscriptstyle\mathsf{t}}$ ions present at any time

 $\circ \qquad \qquad \mathsf{CH}_3\mathsf{COOH} = \mathsf{H}^+ + \mathsf{CH}_3\mathsf{COO}^-$

- As the H⁺ ions react with another chemical, they are removed from the equilibrium
 - concentration of product is reduced
 - equilibrium shifts to RIGHT to replace removed H⁺ ions
 - $\circ~$ more molecules of CH_3COOH dissociate to replace removed H^ ions
 - CH₃COOH molecules will continue to dissociate to replace H⁺ ions as they continue to be removed by reacting.

Property	Reaction with 100cm ³ of 1 mol l ⁻¹ hydrochloric acid	Reaction with 100cm ³ of 1 mol l ⁻¹ ethanoic acid
Degree of Dissociation	Full	Partial
Туре	Strong	Weak
рН	0	4
Acidity	Higher Lower	
Electrical Conductivity	High due to many ions	Low due to few ions
Moles of alkali required for complete neutralisation	Same	Same
Rate of Reaction with 10g calcium carbonate	Faster	Slower
Reaction with 10g calcium carbonate	Same volume of gas	Same volume of gas

Same volume and concentration of strong and weak acid will

- neutralise the same volume of alkali
- give off the same volume of gas with excess chalk

NB: HCl and CH₃COOH both release one H^+ ion

- they are both described as monoprotic
- they both have a power p=1 in volumetric calculations

 $V_{acid} \times C_{acid} \times P_{acid} = V_{alkali} \times C_{alkali} \times P_{alkali}$

- Care must be taken when comparing any acid to sulphuric acid H_2SO_4
 - \circ H₂SO₄ fully dissociates to release 2H⁺ ions per molecule
 - \circ H₂SO₄ is a diprotic acid (power p=2)
 - $\circ~$ 50cm^3 of 1 mol l^-1 H_2SO_4 has the same neutralising ability as 100cm^3 of 1mol l $^{-1}$ hydrochloric acid or ethanoic acid.

b) Comparing Sodium Hydroxide and Ammonium Hydroxide

Alkali	Туре	Dissociation	pН	Conductivity	Rate of Reaction	Volume of acid neutralised
Sodium Hydroxide	strong	full	higher	higher	faster	
Ammonium Hydroxide (ammonia solution)	weak	partial	lower	lower	slower	same

<u>pH of Salts</u>

Not all salts are pH neutral when dissolved in water.

Salts are made when the H⁺ ion in an acid is replaced by a metal ion (or an ammonium ion) from a base/alkali.

		•	•	
Acid in Salt	Alkali in Salt	Example of Salt	pH of Sal [.]	t in Water
Strong	Strong	sodium chloride potassium sulphate	pH = 7	neutral
Weak	Strong	g potassium carbonate		Alkaline
Strong	Weak	ammonium chloride ammonium nitrate	рН < 7	Acidic
Weak	Weak	ammonium ethanoate ammonium carbonate		t covered liversity

a) <u>Salt from Strong Acid v Strong Alkali</u>

Salts from strong acid v strong alkali neutralisation are pH=7 neutral.

• There are no weak ions from strong acids and strong alkalis

b) <u>Salt from Weak Acid v Strong Alkali</u>

Salts from **weak acid** v **strong alkali** neutralisations are alkaline pH>7 e.g. sodium ethanoate

• Sodium ethanoate is the salt from a sodium hydroxide v ethanoic acid neutralisation reaction.

1. Write down ions in the solution	Na⁺ H⁺	CH₃COO ⁻ OH ⁻				
2. Look for a weak acid or weak alkali from these ions	Na⁺ H⁺	CH ₃ COO ⁻ OH ⁻				
3. Follow the following statements to work out the pH						
a) H^+ ions in water and dissolved CH_3COO^- ions join up to make molecules of CH_3COOH by the following equilibrium: $H^+ + CH_3COO^- \iff CH_3COOH$						
b) H ⁺ ions are removed from water and equilibrium in water shifts to replace the removed H ⁺ ions: $H_2O = H^+ + OH^-$						
 c) As H₂O molecules splits into equal numbers of H⁺ ions and OH⁻ i H⁺ ion concentration remains constant as the H⁺ ions join up 		CH₃COO⁻ ions				

- concentration of OH⁻ ions increases
- [OH⁻] > [H⁺] ∴ alkaline pH>7

c) <u>Salt from Strong Acid v Weak Alkali</u>

Salts from **strong acid** v **weak alkali** neutralisations are alkaline pH>7 e.g. ammonium chloride

• ammonium chloride is the salt from an ammonium hydroxide v hydrochloric acid neutralisation reaction.

1. Write down ions in the solution	NH₄⁺ H⁺	Cl ⁻ OH ⁻
2. Look for a weak acid or weak alkali from these ions	NH₄⁺ H⁺	Cl ⁻ OH ⁻
3. Follow the following statements to work out the pH		
a) OH ⁻ ions in water and dissolved NH4 ⁺ ions join up to make molec	ules of NH3 a	nd H2O by the
following equilibrium: $NH_4^+ + OH^- \iff NH_3 + H_2O_{(few ions)}$		
b) OH ⁻ ions are removed from water and equilibrium in water shif	ts to replace t	the removed
OH^- ions: $H_2O = H^+ + OH^-$		
c) As H2O molecules splits into equal numbers of H ⁺ ions and OH ⁻ i	ions	
• OH ⁻ ion concentration remains constant as the OH ⁻ ions join	n up with furt	her NH₄⁺ ions
 concentration of H⁺ ions increases 		
1		

• [H⁺] > [OH⁻] ∴ acidic pH<7

Dissociation of Acids

HA(aq) +	H ₂ O(l)	<u> </u>	H ₃ O⁺(aq)	+	A^(aq)
acid	base		onjugate acid (accepts proton)		conjugate base (donated proton)

 $K_{a} = \frac{[H_{3}O^{+}] \times [A^{-}]}{[HA]}$

NB: H2O omitted as [H2O] = 1

- K_a is a measure of the strength of the acid
- The dissociation constant of an acid can be represented by pKa

• where $pK_a = -log_{10} K_a$

- For strong acids equilibrium lies to the *RIGHT*
 - Effectively complete dissociation
 - \circ K_a has little meaning for strong acids
- For weak acids equilibrium lies to the LEFT
 - Little dissociation e.g. less than 5% dissociation
 - \circ K_a is a measure of the degree of dissociation
 - $\circ~$ The smaller the K_a value, the weaker the acid

- There is an equation to calculate the pH of a weak acid from its pK_a value and its concentration

$$K_{\alpha} = \frac{[H_{3}O^{+}] \times [A^{-}]}{[HA]}$$
 but $[H_{3}O^{+}] = [A^{-}]$
= $\frac{[H_{3}O^{+}]^{2}}{[HA]}$

 $\log_{10}K_a = \log_{10}[H_3O^*]^2 - \log_{10}[HA]$

 $log_{10}K_a = 2 \times log_{10}[H_3O^+] - log_{10}[HA]$

 $log_{10}K_{\alpha} = -2pH - log_{10}[HA]$

 $-\log_{10}K_a = 2pH + \log_{10}[HA]$

 $pK_a = 2pH + log_{10}[HA]$

• For weak acid HA of concentration c mol l⁻¹

 \circ [HA] at equilibrium ~ original concentration c mol l⁻¹

 $pK_{a} = 2pH + \log c$ $2pH = pK_{a} - \log c$ $pH = \frac{1}{2}pK_{a} - \frac{1}{2}\log c$

The equation is only valid for weak acids where the [HA] at equilibrium is almost equal to the original concentration of HA i.e. small degree of dissociation.

- The weaker the acid, the truer the calculated pH will be from the above equation.
 - The stronger the acid, the less accurate the calculated pH will be.

<u>Indicators</u>

- Indicators are used to determine the end point in an acid-alkali titration
- Indicators are dyes with pH-sensitive colours
- Indicators are usually weak acids

HIn(aq) +	H ₂ O(l)	← H ₃ O ⁺ (aq)	+	In ⁻ (aq)
acid	base	conjugate acid		conjugate base

- The unionised weak acid HIn has a distinctly different colour from the conjugate base In⁻.
- The equilibrium constant for indicators is

$$K_{In} = \frac{[H_3O^+] \times [In^-]}{[HIn]}$$
$$\frac{[In^-]}{[HIn]} = \frac{K_{In}}{[H_3O^+]}$$

 The colour of the indicator is determined by the ratio of [HIn] to [In⁻]

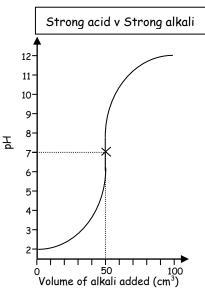
i.e. the relative concentrations of the two coloured forms.

- $\circ~$ Both [HIn] and [In^] depend on [H_3O^{+}] i.e. the pH
- Theoretical colour change takes place when [HIn] = [In⁻]

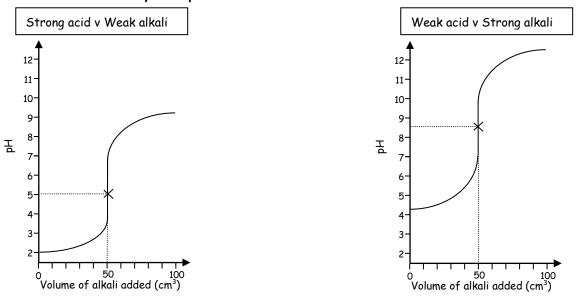
$$\circ K_{In} = [H_3O^+]$$

$$\circ ∴ pK_{In} = pH$$

- In practice, colour change in only visibly distinguishable when [HIn] and [In⁻] differ by a factor of 10
 - pH range over which a colour change can be seen can be estimated by the equation: $pH = pK_{In} \pm 1$


- When choosing an indicator for a titration, the colour change of the indicator (which happens over a very particular pH range) should happen when the pH of the overall titration is changing rapidly.
 - The indicator must change colour with an addition of, roughly, $\frac{1}{2}$ drop of reagent if the titration is to have a reliable end-point.

For Example:


Strong Acid v Strong Alkali Titration

0.01 mol l^{-1} NaOH titration against 50cm³ 0.01 mol l^{-1} HCl.

- pH of original $50 \text{ cm}^3 \text{ HCl} = 2 \text{ (from 0.01 mol } l^{-1} \text{ HCl} \text{)}$
- When 49cm³ of NaOH has been added, only 1cm³ HCl remains
 - Total volume is 99cm³ (~100cm³)
 - $\circ~$ 1cm^{3} HCl in 100cm^{3} volume is a 1/100 dilution
 - $\circ~$ [HCl] is now 0.0001 mol $l^{\text{-1}}$
 - pH = 4
- When 49.9cm³ of NaOH has been added, only 0.1cm³ HCl remains
 - Total volume is 99.9cm³ (~100cm³)
 - $\circ~$ 0.1cm ^3 HCl in 100cm ^3 volume is a 1/1000 dilution
 - $\circ~$ [HCl] is now 0.00001 mol $l^{\text{-1}}$
 - pH = 5
- When 49.99cm³ of NaOH has been added, only 0.01cm³ HCl remains \circ pH = 6
- When 50cm³ of NaOH has been added, no HCl remains
 - pH = 7
- NB. The rapid rise in pH as the endpoint of the titration is approaching
 - Adding additional NaOH beyond neutralisation endpoint achieves a similar shape of curve.

• Titration using a combination of weak and strong acids & alkalis produces similarly shaped curves:

- There is a region of rapid pH change in each of the three curves
 - When choosing an indicator, the indicator should have a colour change pH range which occurs when the pH of the titration is rapid rising.

Indicator	pH Range of Colour Change	Colour (HIn)	Colour (In⁻)
Methyl Orange	3.0 - 4.4	Orange	Yellow
Methyl Red	4.2 - 6.3	Red	Yellow
Bromothymol Blue	6.0 - 7.6	Yellow	Blue
Phenolphthalein	8.0 - 9.8	Colourless	red

• It is not possible to select an indicator for weak acid v weak alkali titrations. The titration curve generated from this titration does not produce an upward area of rapidly increasing pH at the endpoint.

Questions

- 1. Calculate the pK_a and K_a for
 - a) Methyl orange
 - b) Methyl red
 - c) Bromothymol Blue
 - d) Phenolphthalein

Buffers

- A Buffer solution is a solution where the pH of the solution remains approximately constant when
 - small amounts of acids or alkalis are added
 - the solution is diluted with water

Acidic Buffers

- Acidic buffers contain
 - \circ A solution of a weak acid

 $HA(aq) + H_2O(l) \xrightarrow{equilibrium} H_3O^+(aq) + A^-(aq)$ Equilibrium lies well to

 $\circ~$ One of the salts of that weak acid

NaA(aq) $\xrightarrow{\text{fully ionises}} Na^+(aq) + A^-(aq)$

- \circ Large [A⁻] from ionisation of NaA
 - > Equilibrium shifts to LEFT , increasing [HA]
- $\circ~$ Addition of H^+ ions/acid
 - As [A⁻] » [H⁺], buffer has ability to remove large quantity of H⁺ ions
 - > $H^+ + A^-$ ions re-associate forming HA molecules.
- Addition of OH⁻ ions/alkali
 - > OH^{-} ions decrease [H⁺] by neutralisation reaction
 - > Equilibrium shifts to RIGHT to replace H⁺ ions
 - > HA molecules dissociate to produce H^+ ions and A^- ions

LEFT

Calculation of the pH of a Buffer

• To calculate the pH of a buffer, the following equation can be used:

$$K_{\alpha} = \frac{[H_{3}O^{+}] \times [A^{-}]}{[HA]}$$

$$[H_{3}O^{+}] = \frac{K_{\alpha} \times [HA]}{[A^{-}]}$$

$$[HA_{3}O^{+}] = \frac{K_{\alpha} \times [Acid]}{[Salt]}$$

$$[H_{3}O^{+}] = \frac{K_{\alpha} \times [Acid]}{[Salt]}$$

$$[H_{3}O^{+}] = \mu K_{\alpha} - \log_{10} \frac{[Acid]}{[Salt]}$$

- If the buffer has water added, both [salt] and [acid] are equally diluted and this has no effect on the ratio of [acid] to [salt]
 - \circ [H₃O⁺] is unaffected
 - pH is unaffected
- good buffers must have reasonable reserves of A⁻ and HA
 - \circ adding H⁺ ions removes A⁻
 - adding OH^- dissociates $HA \longrightarrow H^+ + A^-$
 - if buffer has [salt] = [acid], then buffer has equal ability in resisting pH change by the addition of H⁺ or OH⁻.

Questions

- 1. Calculate the pH of the buffer solution made from 1.0 mol l^{-1} methanoic acid and 1.78 mol l^{-1} sodium methanoate solution. The pK_a of methanoic acid is 3.8.
- 2. Calculate the pH of the buffer solution made from 0.1 mol l^{-1} solutions of ethanoic acid *and* potassium ethanoate. The pK_a of ethanoic acid is 4.8.

• The composition of an acid buffer can be calculated from the same equation

e.g. Calculate the concentration ratio of [acid]:[salt] for a propanoic acid buffer with pH=5. The pK_a of propanoic acid = 4.9

$$pH = pK_{a} - \log_{10} \frac{[Acid]}{[Salt]}$$

5.0 = 4.9 - $\log_{10} \frac{[Acid]}{[Salt]}$
 $\log_{10} \frac{[Acid]}{[Salt]} = -0.1$
 $\frac{[Acid]}{[Salt]} = 0.794$

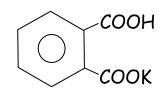
<u>Answer</u>: Dissolve 0.794 moles of propanoic acid and 1 mole of sodium propanoate in 1 litre of water (or similar proportionate amounts)

Questions

- 1. Calculate the concentrations of acid and salt solutions required to make:
 - a) a buffer of pH=6.0, made with carbonic acid ($pK_a = 6.4$) and sodium hydrogencarbonate
 - b) a buffer of pH=3.1, made from chloroethanoic acid (pK_a =2.9) and its potassium salt.

Examples of Buffers

Buffers are important chemical systems in chemistry and in biological systems:


- enzymes work in narrow pH environments
 - amylase in saliva and the small intestine require a slightly alkaline pH to function with optimum activity
- Blood is buffered at pH=7.4
 - CO₂/bicarbonate equilibrium (bicarbonate = hydrogencarbonate)
 - Excess CO₂ removed by exhalation in lungs
 - Excess bicarbonate removed by excretion in urine
- The sea is buffered to a particular pH
 - Marine life required stable pH for survival
 - Sea water contains significant concentration of carbonate and bicarbonate ions

 $H_2CO_3 \implies H^+ + HCO_3^- \implies 2H^+ + CO_3^{2-}$

- Phosphate solutions act as buffers
 - $\,\circ\,\,$ 2nd and 3rd dissociations of H_3PO_4 are weak

 $\circ \qquad H_3PO_4 \longrightarrow H^+ + H_2PO_4^-$

- $\circ \qquad H_2 PO_4^- \qquad \overleftarrow{} \qquad H^+ + H PO_4^{2^-}$
- H
- HPO_4^{2-} \Longrightarrow $H^+ + PO_4^{3-}$
- A useful all-in-one buffer is potassium hydrogenphthalate

• The weak acid and its salt are in the same molecule

- When a solute is shaken in 2 immiscible liquids
 - If solute is soluble in both liquids
 - Some solute dissolves in both liquids
- Solute partitions (distributes) itself between the liquids in a definite ratio called the <u>partition coefficient</u>.
- The value of the partition coefficient depends on
 - \circ The solute used
 - two immiscible liquids
 - the temperature
 - e.g. I_2 dissolves in both $KI_{(aq)}$ and $CHCl_3(l)$

$$K = \frac{[I_2] \text{ in } KI_{(aq)}}{[I_2] \text{ in } CHCl_{3(l)}}$$

- The most common application of partition coefficients is solvent extraction
- This is often used for purification of chemicals

e.g. impure carboxylic acid dissolved in water

- Carboxylic acid can be extracted from aqueous solution by adding another immiscible liquid (ethoxyethane/ether)
- Carboxylic acid dissolves in ether but the impurities stay in the water
- It is more efficient to use small volumes of organic solvent in repeated extractions rather than one larger volume in a single extraction.

Worked Example: 10 g of carboxylic acid dissolved in 100cm³ of water

a) Single extraction with 100 cm^3 ether (with v grams extracted)

$$K = \frac{[Acid]_{ether}}{[Acid]_{water}} = 5$$

$$\frac{\frac{v}{100}}{10 - v} = 5$$

$$\frac{v}{100} = 5$$

$$\frac{v}{10 - v} = 5$$

$$\frac{v}{10 - v} = 5 (10 - v)$$

$$v = 50 - 5v$$

$$6v = 50$$

$$v = 50 / 6$$

$$= 8.33g$$

b) w, x, y and z grams of carboxylic acid are extracted in successive extractions using 25 cm^3 of ether each time.

Extraction 1:

$$K = \frac{[Acid]_{ether}}{[Acid]_{water}} = 5$$

$$\frac{\frac{25}{10 - w}}{100} = 5$$

$$\frac{4w}{100} = 5$$

$$\frac{4w}{10 - w} = 5$$

$$4w = 5(10 - w)$$

$$4w = 50 - 5w$$

$$9w = 50$$

$$w = 50 / 9$$

$$= 5.56g$$

Mass of carboxylic acid remaining in water = 10g - 5.56g = <u>4.44g remaining</u>

Extraction 2:

$$K = \frac{[Acid]_{ether}}{[Acid]_{water}} = 5$$

$$\frac{\frac{25}{4.44 - x}}{100} = 5$$

$$\frac{4x}{100} = 5$$

$$\frac{4x}{4.44 - x} = 5$$

$$4x = 5 (4.44 - x)$$

$$4x = 22.2 - 5x$$

$$9x = 22.2$$

$$x = 22.2 / 9$$

$$= 2.47g$$

Mass of carboxylic acid remaining in water = 4.44g - 2.47g = 1.97g remaining

Extraction 3:

$$K = \frac{[Acid]_{ether}}{[Acid]_{water}} = 5$$

$$\frac{\frac{y}{25}}{1.97 - y} = 5$$

$$\frac{4y}{100} = 5$$

$$\frac{4y}{1.97 - y} = 5$$

$$4y = 5 (1.97 - y)$$

$$4y = 9.85 - 5y$$

$$9y = 9.85$$

$$y = 9.85 / 9$$

$$= 1.09g$$

Mass of carboxylic acid remaining in water = 1.97g - 1.09g = <u>0.88g</u> <u>remaining</u>

Extraction 4: $K = \frac{[Acid]_{ether}}{[Acid]_{water}} = 5$ $\frac{\frac{z}{25}}{0.88 - z} = 5$ $\frac{4z}{100} = 5$ $\frac{4z}{0.88 - z} = 5$ 4z = 5 (0.88 - z) 4z = 4.40 - 5z 9z = 4.40 z = 4.40 / 9 = 0.49gTotal Carboxylic Acid Extracted = w + x + y + z = 5.56 + 2.47 + 1.09 + 0.49 = 9.61g